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The nonlinear wave modulation of planar and nonplanar �cylindrical and spherical� ion-acoustic envelope
solitons in a collisionless unmagnetized electron-positron-ion plasma with two-electron temperature distribu-
tions has been studied. The reductive perturbative technique is used to obtain a modified nonlinear Schrödinger
equation, which includes a damping term that accounts for the geometrical effect. The critical wave number
threshold Kc, which indicates where the modulational instability sets in, has been determined for various
regimes. It is found that an increase in the positron concentration ��� leads to a decrease in the critical wave
number �Kc� until � approaches certain value �c �critical positron concentration�, then further increase in �
beyond �c increases the value of Kc. Also, it is found that there is a modulation instability period for the
cylindrical and spherical wave modulation, which does not exist in the one-dimensional case.
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I. INTRODUCTION

An electron-positron plasma, a fully ionized gas com-
posed of electrons and positrons having equal masses and
charges with opposite polarity, is considered not only as a
building block of our early universe �1�, but also as an om-
nipresent ingredient of a number of astrophysical objects,
such as active galactic nuclei �2�, pulsar magnetospheres �3�,
solar flares �4�, fireballs producing �-ray bursts �5�, etc.
Electron-positron plasmas are also observed in laboratory ex-
periments in which the positrons can be used to probe the
particle transport in tokamak plasmas �6–8�. Processes of
electron-positron pair production can occur during intense
short laser pulse propagation in plasmas �9�. However, be-
cause of the rather long lifetime of positrons, most of the
astrophysical �1,4,5� and laboratory �6–8� plasmas become
an admixture of electrons, positrons, and ions. Surko and
Murphy �10� have reported that over a wide range of param-
eters, annihilation of electrons and positrons, which is the

analog of recombination in plasma composed of ions and
electrons, is relatively unimportant. They have also reported
that even at an electron density of 1�1012 cm−3 and a tem-
perature as low as 1 eV, the positron annihilation time is
greater than 1 s. Therefore, the study of electron-positron-ion
�EPI� plasmas is important to understand the behavior of
both astrophysical and laboratory plasmas.

Recently, the wave propagation in such a three-
component EPI plasma has attracted much interest; see for
example Refs. �9–18�. Rizzato �11� considered weakly non-
linear circularly polarized electromagnetic waves in a cold
EPI plasma with stationary ions. Berezhiani et al. �9,12� in-
vestigated the nonlinear propagation of intense electromag-
netic radiation in a magnetized EPI plasma. Rizzato �11� and
Berezhiani et al. �9,12� found that such a three-component
plasma supports radiation driven humped electrostatic poten-
tials, which can be used to accelerate charged particles. Ion-
acoustic solitary waves have been studied in an unmagne-
tized three-component EPI plasma �13�. The nonlinear
investigation showed that the amplitude of the electron den-
sity hump reduces due to the presence of positrons in the
electron-ion plasma. Yu et al. �14� studied inertial Alfvén
solitary vortices in a strongly magnetized pair plasma.
Double layers associated with the kinetic Alfvén waves in a
magnetized EPI plasma have been studied by Kakati and
Goswami �15�. The nonlinear propagation of ion-acoustic
waves in EPI with trapped electrons has been studied by
Alinejad et al. �16�. Tiwari et al. �17� studied the effects of
positron density and temperature on ion-acoustic dressed
solitons in EPI plasma. Sabry et al. �18� investigated for the
nonlinear structures �explosive, solitons, and shock� in quan-
tum EPI magnetoplasmas.

Two-electron temperature distributions are very common
in the laboratory �19,20�, as well as in space plasmas �21�.
Shatashvili et al. �22� have reported that out flows of the
electron-positron plasma from pulsars entering an interstellar
cold, low-density electron-ion plasma form two-temperature
EPI plasma. Mishra et al. �23� investigated ion-acoustic
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double layers in EPI plasma with two-electron temperature
distributions. They found that there exist two critical concen-
trations of positrons, which decide the existence and nature
of the ion-acoustic double layers.

Recently, Salahuddin et al. �24� investigated ion-acoustic
envelope solitons in a collisionless unmagnetized EPI plasma
�with one-electron temperature distribution�, where they
found that as the concentration of positrons increases, the
instability sets in at lower wave numbers. Later, Mishra et al.
�23� investigated ion-acoustic double layers in EPI plasma
with two-electron temperature distributions. They found that
there exist two critical concentrations of positrons, which
decide the existence and nature of the ion-acoustic double
layers.

The effects of planar and nonplanar �cylindrical and
spherical� geometries as well as the positron concentration
on the amplitude modulation of ion-acoustic envelope soli-
tary waves in EPI plasma, with two-electron temperature dis-
tributions, have not been investigated before. Therefore, we
shall investigate the amplitude modulation of the ion-
acoustic envelope solitary waves in planar and nonplanar ge-
ometries as well as the role of the positron concentration in
an EPI plasma with two-electron temperature distributions.

The paper is organized in the following fashion: the basic
equations governing the nonlinear dynamics of the ion-
acoustic envelope solitary waves are presented and a modi-
fied nonlinear Schrödinger equation �NLSE� is derived in
Sec. II. In Sec. III, we discuss the modulational instability
analysis of the ion-acoustic envelope solitary waves in planar
and nonplanar �cylindrical and spherical� geometries under
the effects of various physical parameters. Finally, the results
are summarized in Sec. IV.

II. DERIVATION OF THE CYLINDRICALLY
AND SPHERICALLY MODIFIED NLSE

We consider an unmagnetized plasma with cold ions and
two distinct groups of electrons having densities nec and neh,
and temperatures Tc and Th, respectively, beside hot posi-
trons. For the ion-acoustic waves, the electrons and positrons
inertia are neglected and the electron and positrons fluids can
be assumed to be separately in equilibrium with the electro-
static potential �. Thus the electron number densities are
given by

nec = � exp� 1

� + ��
�� , �1�

neh = � exp� �

� + ��
�� , �2�

while for the hot positrons

np = exp�− ��� , �3�

where �=e�̃ /Tef f, �=nec0 /n0, �=neh0 /n0, �=Tc /Th, �
=Tef f /Tp with Tef f =Tc / ��+���, and nec0, neh0, np0, and n0
are the equilibrium densities of two-electron components,
positron component, and ion component, respectively. The
dynamics of the cold ion fluid is governed by the hydrody-
namic equations, namely,

�n

�t
+

1

r�

�

�r
�r�nu� = 0, �4�

�u

�t
+ u

�u

�r
= −

��

�r
. �5�

The system of equations is closed by the Poisson equation

1

r�

�

�r
�r���

�r
� = nh + nc − �np − �1 − ��n , �6�

where �=0, for one-dimensional geometry and �=1,2 for
cylindrical and spherical geometries, respectively. Here �
=np0 /n0. It may be noticed that in the present model, it is
assumed that the positron annihilation time is larger than the
inverse of the characteristic frequency of the ion-acoustic
wave. Under such conditions, one can assume that annihila-
tion of positrons with electrons is negligible and the effect of
annihilation can be neglected. In the above equations, n and
u are the density and fluid velocity of the ion species. In Eqs.
�1�–�6�, the densities have been normalized to the equilib-
rium value n0, x to 	D= �Tef f /4
n0e2�1/2, the ion fluid veloc-
ity u to the effective ion-acoustic speed Cs= �Tef f /mi�1/2, and
the time is in the unit of the ion plasma period �pi

−1

= �4
n0e2 /mi�−1/2. Here, mi is the ion mass and e is the elec-
tronic charge. The charge-neutrality condition is expressed as
�+�=1. Mishra et al. �23� studied small amplitude ion-
acoustic double layers for the system of Eqs. �1�–�6� when
�=0.

In order to investigate the amplitude modulation of ion-
acoustic envelope solitary waves in our plasma system, we
employ the standard reductive perturbation multiple scales
technique �25�. The independent variables are stretched as
�=�r−vgt� and �=2t, where  is a small �real� parameter
and vg is the envelope group velocity to be determined later.
The dependent variables are expanded as

��r,t� = �0 + �
m=1

�

m �
L=−�

�

�L
�m���,��exp�iL�� , �7�

where

�L
�m� = �uL

�m� uL
�m� �L

�m� �T,

�L
�0� = �1 0 0 �T, � = kr − �t ,

k and � are real variables representing the fundamental �car-
rier� wave number and frequency, respectively. All elements
of �L

�m� satisfy the reality condition �−L
�m�=�L

��m�, where the
asterisk denotes the complex conjugate. Substituting Eq. �7�
into Eqs. �1�–�6� and collecting terms of the same powers of
, the first-order �m=1� equations with L=1, give ni1

�1�

= k2

�2 �1
�1�, ui1

�1�= k
��1

�1�, and
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� = � k2�1 − ��
1 + k2 + ��

�1/2

. �8�

The second-order �m=2� reduced equations with L=1 are
given by

i��− �n1
�1� + ku1

�1�� + i�vg�− �n1
�2� + ku1

�2��

= �vg
2�n1

�1�

��
− �vg

�u1
�1�

��
,

− i�u1
�2� + ik�1

�2� = vg

�u1
�1�

��
−

��1
�1�

��
,

and

���1 − ��n1
�1� − �1 + k2 + ����1

�1��

+ �vg��1 − ��n1
�2� − �1 + k2 + ����1

�2��

= − 2ik�vg

��1
�1�

��
. �9�

Solving the system of equations �9� with the help of the
first-order quantities, we can express the second-order quan-
tities with L=1 as

n1
�2� =

k

�3�k��1
�2� − 2i�� − kvg�

��1
�1�

��
	 ,

u1
�2� =

1

�2�k��1
�2� − i�� − kvg�

��1
�1�

��
	 , �10�

with the compatibility condition

vg =
��1 − � − �2�

k�1 − ��
=

��

�k
. �11�

Recall that compatibility condition �11� is the group velocity
of the envelope soliton.

The second harmonic modes �m=L=2� arising from the
nonlinear self-interaction of the carrier waves are obtained in
terms ��1

�1��2 as

n2
�2� = �1��1

�1��2,

u2
�2� = �2��1

�1��2,

and

�2
�2� = �3��1

�1��2, �12�

where �1, �2, and �3 are given in the Appendix.
The nonlinear self-interaction of the carrier wave also

leads to the creation of a zeroth-order harmonic. Its strength
is analytically determined by taking L=0 component of the
third-order reduced equations which can be expressed as

n0
�2� = �4
�1

�1�
2,

u0
�2� = �5
�1

�1�
2,

and

�0
�2� = �6
�1

�1�
2, �13�

where �4, �5, and �6 are given in the Appendix.
Finally, the third harmonic modes �m=3 and L=1�, with

the aid of Eqs. �12� and �13�, give a system of equations,
which can be reduced to the following modified NLSE:

i
��

��
+ P

�2�

��2 + Q
�
2� + i
�

2�
� = 0, �14�

where ���1
�1� for simplicity. The term i �

2�� in Eq. �14� ac-
counts for the nonplanar �cylindrical and spherical� geom-
etries effects. The dispersion coefficient P reads

P =
1

2

�2�

�k2 =
3

2

vg

�
�vg −

�

k
� , �15�

and the nonlinear coefficient Q is

Q = −
1

2
���1 + 2k�2� +

1

4
���4 + 2k�5� −

�2�3 − �6��3�2��2��� + ����2� − 1� + ��2���2� − 1��
4k2�1 − ����� + ��3

+
�3�� + ��3�1 + ��2�3� + ���3��2 + 3����� + ���

4k2�1 − ����� + ��3 . �16�

III. STABILITY ANALYSIS AND DISCUSSION

A. Derivation of the nonlinear dispersion relation

To investigate the stability/instability of the planar and
nonplanar envelope IA waves, we consider the development
of the small modulation �� according to

� = ��̄0 + ����,���exp�− i�
�0

�

�����d�� −
�

2
ln �	 , �17�

where �̄0 is the constant �real� amplitude of the pump carrier
wave and � is a nonlinear frequency shift, and taking the
perturbation �� as
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�� = ��̄0 exp�i�K� − �
�0

�

�����d���	 + c.c., �18�

where K�−��0

� �d�� is the modulation phase with K and � as
the perturbation wave number and frequency of the modula-
tion, respectively. Using Eqs. �17� and �18� into Eq. �14�, one
obtains the nonlinear dispersion relation �26�

�2 = �PK2�2�1 −
Q

P

2
�̄0
2

��

1

K2� , �19�

which exactly reduces to the dispersion relation for the pla-
nar geometry when �=0. We immediately see that the modu-
lation instability condition will be satisfied if PQ�0 and
K2�Kc

2���=2Q
�̄0
2 / �P���.

B. Stability/instability of planar envelope excitations

To investigate the modulational stability/instability of the
planar envelope pulses, one sets �=0 into the nonlinear dis-
persion relation �19�. It is straightforward to see that a nega-
tive sign for PQ is required for wave amplitude �modula-
tional� stability. On the other hand, a positive sign of PQ
allows for a random perturbation of the amplitude to grow
and may thus lead to wave collapse or blowup.

To investigate the stability profile, we have determined in
various regimes the critical wave number threshold Kc �at
which PQ=0�, which indicates where the instability sets in.
The variation in the critical wave number Kc with respect to
the positron concentration � is shown in Fig. 1 for given
values of � and �, and three different values of �. It is clear
that increasing the positron concentration ��� decreases the
critical wave number �Kc� until � approaches certain value
�c, then further increase in � beyond �c increases the value
of Kc. Such behavior reflects the existence of double layers.

Also, an increase in � increases the critical wave number Kc
and decreases the value of �c.

The effect of � and � on the variation of the critical wave
number Kc is depicted in Fig. 2. It is found that the critical
wave number �Kc� decreases by increasing � until � ap-
proaches �c, then further increase in � increases the value of
Kc, which is the same behavior for Fig. 1. However, the
effect of � is opposite to that of �, where an increase in �
decreases the critical wave number KC but increases the
value of �C.

Finally, an estimation of the effect of � �i.e., TC /Th� and �
on the variation of the critical wave number Kc is shown in
Fig. 3. For ���c the critical wave number Kc is a decreas-
ing function in �. While Kc is an increasing function in �, for
���c. An increase in the � value decreases the critical wave
number Kc, for ���c. While, increasing � increases Kc, for
���c.

C. Stability/instability of spherical and cylindrical excitations

The local instability growth rate, for ��0, of the nonlin-
ear dispersion relation �19� is given by �26�

Im � = PK2� 2Q

PK2


�̄0
2

�� − 1�1/2

. �20�

The instability growth will cease for cylindrical geometry
��=1� when

� � �max =
2
�̄0
2

K2

Q

P
, �21�

and for spherical geometry ��=2� when
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FIG. 1. �Color online� Variation in the critical wave number �Kc�
against the positron concentration ��� with �=0.01 and �=0.05 for
different values of �.
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FIG. 2. �Color online� Variation in the critical wave number �Kc�
against the positron concentration ��� with �=0.1 and �=0.05 for
different values of �.
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� � �max =

�̄0

K
�2Q

P
. �22�

It is clear that there is a modulation instability period ��� for
the cylindrical and spherical wave modulation, which does
not exist in the one-dimensional case. The growth ��� of the
modulation during the unstable period �26� is

� = exp��
�0

�max

Im �d��� = exp�Q
�̄0
2

��−1 f�R�� , �23�

where R= �2Q
�̄0
2 / �PK2�0
����1. For the cylindrical geom-

etry, we have

f�R� � fcyl = arctan �R − 1 −
�R − 1

R
, �24�

while for the spherical geometry

f�R� � fsph =
1

R
��R ln��R + �R − 1

�R − �R − 1
� − 2�R − 1	 .

�25�

We note that fcyl is an increasing function in R, and fcyl
→
 /2 as R→�. This means that during the modulation in-
stability period, the total growth increase as R does for the
cylindrical case. But, for fsph there is a maximum value

max fsph =
2�Rc − 1

Rc
, �26�

where Rc is determined by

4�Rc − 1 = �Rc ln��Rc + �Rc − 1
�Rc − �Rc − 1

� . �27�

For spherical geometry, the modulation instability growth
rate will achieve its maximum at R=Rc and then decreases as

R increases further. It should be noted that the modulation
instability period given by Eq. �21� for cylindrical geometry
is longer than that determined by Eq. �22� for spherical ge-
ometry; meanwhile, during the unstable period, the modula-
tion instability growth rate is always an increasing function
of R in the cylindrical geometry, but not in the spherical
geometry, as depicted in Fig. 4. This suggests that the spheri-
cal waves are more structurally stable to perturbations than
the cylindrical waves.

IV. CONCLUSIONS

To summarize, we have investigated the modulational in-
stability of the envelope ion-acoustic solitary waves in an
unmagnetized electro-positron-ion plasma for planar as well
as for cylindrical and spherical geometries. The critical wave
number threshold Kc, which indicates where the instability
sets in, has been determined for various regimes. The present
study shows that the existence of two-electron temperature
distributions in electron-positron-ion plasmas introduces
unique features for the nonlinear wave modulation which do
not exist in ordinary electron-positron-ion plasmas. It is
found that increasing the positron concentration � leads to a
decrease in the critical wave number �Kc� until � approaches
certain value �c �critical positron concentration�, then further
increase in � beyond �c increases the value of Kc. Such
behavior reflects the existence of double layers.

Also, it is found that there is a modulation instability pe-
riod for the cylindrical and spherical wave modulation,
which does not exist in the one-dimensional case. During the
unstable period, the modulation instability growth rate is al-
ways an increasing function of R in the cylindrical geometry,
but not in the spherical geometry. This suggests that the
spherical waves are more structurally stable to perturbations
than the cylindrical waves.
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APPENDIX: COEFFICIENTS OF THE HARMONIC MODES

The coefficients � j �i.e., j=0,1 , . . . ,6� are

�0 = 2��2��� + ����2� − 1� + ��2���2� − 1� , �A1�

�1 =
k2�3k2�4k2 + �� + 1���� + ��2 + �2�0�

2��� + ��2�2��4�2 + � − 1�k2 + ��� + 1��2�
, �A2�

�2 =
k

2�3�k2 +
�0�4 − 3k4�� − 1���� + ��2

��� + ��2��4�2 + � − 1�k2 + ��� + 1��2�� , �A3�

�3 =
�0�4 − 3k4�� − 1���� + ��2

2��� + ��2�2��4�2 + � − 1�k2 + ��� + 1��2�
, �A4�

�4 =
2��� + 1���� + ��2vgk3 + ��k2��� + 1���� + ��2 + �0�2�

��� + ��2�3���� + 1�vg
2 + � − 1�

, �A5�

�5 =
��k2��� + 1���� + ��2 + �0�2�vg − 2k3�� − 1���� + ��2

��� + ��2�3���� + 1�vg
2 + � − 1�

, �A6�

and

�6 =
− 2�� − 1���� + ��2vgk3 − �� − 1���� + ��2�k2 + �0�3vg

2

��� + ��2�3���� + 1�vg
2 + � − 1�

. �A7�
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